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ABSTRACT

Crack growth studies are being carried out with o-xylene in an amorphous
thermoplastic, polyetherimide (PEI), via a static deadweight loading apparatus.
The three systems evaluated were the neat resin, composite, and adhesively bonded
composite. The neat resin specimens show striationlike crack growth band mark-
ings on the fracture surfaces. The spacing between the growth bands increases
with increasing crack length in each specimen. In the case of the adhesively
bonded composite, a characteristic mosaic pattern of intersecting cracks normal
to the plane of the adhesive was seen on the fracture surfaces. These cracks, as
well as matrix cracks perpendicular to the fibers seen on the fractured composite
specimens, appear to result from residual stress driven solvent cracking.
Although the rates of crack propagation in the composite systems are much slower
than those in the neat resin at most GI values, the mode of solvent-induced
degradation is shown to be matrix dominated.
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INTRODUCTION

There has been a large growth in the use of polymeric composites in military
applications. The replacement of traditional materials, primarily metals, with com-
posite structure is favored in order to reduce the weight of components, and improve
fuel efficiency, as well as to achieve higher specific modulus and specific strength.
Fiber-reinforced composite structures usually consist of many layers or laminae
stacked up in a predetermined arrangement to attain optimum properties and perform-
ance. However, composite materials have low interlaminar strengths compared to
their strengths parallel to the fiber, which can result in delamination.

Currently, the matrices chosen in most systems have had thermoset characteris-
tics, such as high cross-link density, high stiffness, and brittleness. The resist-
ance to interlaminar crack propagation has been known to be dominated by the fracture
toughness of the neat resins;, 2 therefore, the low fracture toughness of the brittle
matrix usually translates into poor composite interlaminar strength. Considerable
concern over delamination-induced fracture has broqht a number of research groups
to investigate the use of tougher matrix materials.

Despite their toughness, some of the thermoplastics are susceptible to the
attack of many organic solvents while under stress, including CW agents and decontam-
inates. The stress can either be mechanically induced or a residual thermal stress
due to thermal coefficient of expansion mismatches and high processing temperatures.
Such solvent-enhanced degradation can cause problems in the service environments as
seen in many amorphous glassy polymers.

3

Understanding the fundamental failure mechanisms of solvent-enhanced stress
cracking is of practical importance in order to improve the durability of the
advanced composites. In the present paper, o-xylene is selected as a cracking agent
to study the crack growth of an amorphous polyetherimide as in the neat resin, com-
posite, and adhesively bonded composite systems.

EXPERIMENTAL METHODS

The double cantilever beam (DCB) specimen, shown in Figure 1, was used to study
Mode I delamination crack growth in the composites. A Teflon-coated glass fabric
was inserted between the center plies at one end during lay-up. This was to provide
a starter notch for subsequent crack propagation. The compact tension (CT) specimen
per ASTM E 399,4 in Figure 2, was used to study crack propagation in the neat resin.
These test specimens were subjected to droplets of o-xylene while under a constant
load. The crack length measurements were made as a function of time with either a
traveling microscope or a camera.

1. BRADLEY, W. L., and COHEN, R. N. Marx Deformation and Fracture in Graphite-Reinforced Epoxies. ASTM STP 876, 1985, p. 389.
2. HUNSTON, D. L., MOULTON, R. J., JOHNSTON, N. J., and BASCOM, W. D. Matrix Resin Effects in Composite Delamination: Mode !

Fracture Aspects. ASTM STP 937, 1987, p. 74.
3. KAMBOUR, R. P. A Review of Crazing and Fracture in Thermoplastics. General Electric Report No. 72CRD285. October 1972.
4. Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials. 1988 Annual Book of ASTM Standards, Technical

Report Designation E 399-83, 1983. p. 681.
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The parameter which measures the resistance to crack propagation is called the
stress intensity factor K I or the associated strain energy release rate, G I . ASTM
compact tension test yields stress intensity factor, KI, via Equation 1, from which
G, of the neat resin can be calculated via Equation 2.

K I = P/(Bwl/2)[29.6(a/w))I/
2 - 185.5(a/w)3/2 + 655.7(a/w)5/2

- 1017(a/w) 7 /2 + 638.7(a/w)9/2 ]  (1)

K1
2

and GI = - (1 - v 2 ) (2)
E

where KI stress intensity factor
P load
B specimen thickness
w specimen width

a = crack length

E Young's modulus
v - Poisson's ratio.

Using the compliance method,5 G, for composite DCB specimen can be calculated as

GI - p2 dC

2w da (3)

and C =  6 / P (4)

where C is the compliance, and 8 is the displacement of the crack ends at any

crack length.

RESULTS AND DISCUSSION

Stress versus lifetime measurements have been used in many environment stress

cracking studies. Although such tests are still useful, it is recognized that
fracture mechanics based tests can provide better understanding of the basic mecha-
nisms involved. In this work, precracked specimens for both neat resin and composite
are such that a constant deadweight load results in increasing strain energy release
rate with increasing crack length.

Figure 3 shows the neat resin raw data for the crack length versus time as a
function of initial load. These data, after being reduced in terms of GI, are super-
imposable as shown in Figure 4. However, GI values in solvent-assisted stress
cracking are sinificantly lower than the critical value needed for the neat resin
(GIC = 3.2 kJ/m ) to grow a crack in air.

Scanning electron microscopy (SEM) studies were carried out on the fracture

surfaces of the test specimens. In addition to a flat glassy appearance compared to
those tested in air, the neat resin specimens tested in o-xylene show striationlike
crack growth band markings on the fracture surface, as seen in Figure 5, which trace
out crack front positions at particular values of time. The spacing between the

5. RUSSELL, A. ., and STREET, K. N. Moisture and Temperature Effects on the Mix-Mode Dclaminanon Fracture of Unidirectional
Graphite/Epoxy. ASTM STP 876, 1985, p. 349.
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growth bands increases with increasing crack length in each specimen. In Figure 6,
at 100OX magnification, discontinuous growth bands are clearly seen, which are simi-
lar to those under fatigue crack growth in air for many glassy amorphous polymers.6,7

At a higher magnification (2000X), a distinct morphology of "patch" patterns are
seen in Figure 7, reflecting the craze matter just before crack propagation, which
decrease in size in the direction of crack growth.

Figure 8 shows that the crack growth rates in the composite are much slower
than in the neat resin at most GI values. Multiple cracking on the adjacent layers,
as well as ahead of the main crack tip, was noticed on the profile of the tested
composite specimen. In addition, matrix cracks perpendicular to the fiber direction
within the weave are shown in Figures 9 and 10. This solvent-assisted stress crack-
ing is attributed to the presence of residual thermal stress between the fibers and
their surrounding matrix, resulting from the cool-down process.

The importance of the residual stress driven stress cracks was further addressed
in the studies of adhesively bonded composites. The approach taken was to prepare
test specimens, in which solvent-sensitive adhesive was built into the solvent-
resistant composite. The specimens were fabricated from prepreg with PEI film adhe-
sive between the center plies, and in various thicknesses. The matrix in the prepreg
is a newly developed PEI resin with good resistance to o-xylene, which has a dif-
ferent PEI formulation than that in the neat resin and in the film adhesive.

In the adhesively bonded PEI composites, the delamination crack growth rates
are shown in Figure 11 to increase with the thickness of the adhesive layer. 8

Figure 12 compares the neat resin data with data for the adhesively bonded composites.
Results show that the rates of crack propagation in the adhesive systems are much
slower than in the neat resin. Figures 13 to 15 of the fracture surfaces show a
characteristic mosaic fracture pattern. The thicker the adhesive layer, the larger
the size of mosaic cracks. This indicates that the residual biaxial tensile stress
field is sufficient to drive the solvent-assisted cracks throughout the adhesive
region prior to the growth of the main crack. While the bidirectional crack pattern
propagates through the adhesive layer, it draws in more and more solvent to feed
further expansion of the crack system. When the main crack finally passes, it must
continually reinitiate failures in the individual blocks of the remaining adhesive,
which are still well-bonded to the laminate.

For the 2-mil-thick specimen, the rate of crack growth is much slower than for
the others. This has been attributed to the effect of the fabric weave, which tends
to press the adhesive layer to a very thin condition at the weave crossover points.
Consequently, the fibers appear to interfere with crack growth, while the crack
grows faster in the resin-rich zones between these points. The weave effect is
evident in Figure 15.

In the case of a thick adhesive, the nucleation points and crack growth band
markings within each block are seen in Figure 16; thinner adhesives show some propa-
gation from block to block (Figure 17). Smaller band spacings, seen in the
adhesively bonded composites compared to those in the neat resins, indicate that
crack reinitiation occurs at lower G, level within each mosaic block.

6. DOLL, W. Optical Interference Measurements and Fracture Mechanics Analysis of Crack lYp Craze Zones in Advances in Polymer Science,
Springer-Verlag, Berlin Heidelberg, v. 52/53, 1983, p. 153.

7. HERTZBERG, R. W., and MANSON. J. A. Fatigue of Engineerng Plastics. Academic Press. New York. 1980, p. 160-169.
8. HSIEH, A. J., and MANDELL, J. F. Environment Enhanced Delamination Crack Growth of AdhesivelY Bonded Poilethenmide Matrix

Composite. Proceedings of the ACS Division of Polymeric Materials: Sci. and Eng., v. 59, 1988. p. 945.
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CONCLUSIONS

The mode of solvent-assisted stress cracking in the neat resin, composite, and
adhesively bonded composite is shown to be matrix dominated. The residual thermal
stress is sufficiently high to drive solvent stress cracks in the matrix, as well as
in the adhesive layer. In the case of adhesively bonded composites, the size of

mosaic cracks increases as the adhesive layer thickness increases, as does the rate

of delamination crack growth. The need to reinitiate a crack within each mosaic

block greatly retards the main crack growth; consequently, the crack growth rates
are much slower than those in the neat resin at most GI values. Finally, it is not

overemphasized that solvent stress cracking can be very important not only for

glassy polymers, but also for composites with amorphous thermoplastic matrices.
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Figure 1. Compact tension (CT) specimen geometry Figure 2. Sketch of double cantilever
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Figure 3. Crack length versus time as a function of Figure 4. Crack growth rate versus G for the
initial G in the neat resin CT specimens. data in Figure 3.
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Figure 5. SEM micrograph shows crack
growth band markings on the neat resin
fracture surface.

1 mm

Figure 6. SEM micrograph clearly shows
discontinuous growth bands on the neat
resin fracture surface.

Figure 7. SEM micrograph shows the size of
"patch" pattern decreases in the direction of
crack growth.
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Figure 8. Comparison of the composite data with the data for the neat resin

(solid line is for neat resin as in Figure 4).
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0.1 mm

Figure 9. SEM micrograph shows matrix cracks perpendicular to the
fibers on the fractured composite specimen.

Figure 10. SEM micrograph shows matrix cracks perpendicular to the
fibers on the fractured composite specimen.
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Figure 13. SEM micrograph shows a characteristic mosaic crack pattern on the
fracture surface of the composite specimen with 18-mil-thick PEI film adhesive.

14,4

Figure 14. SEM micrograph shows a characteristic mosaic crack pattern on the
fracture surface of the composite specimen with 6-milthick PEI film adhesive.
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1mm

Figure 15. SEM micrograph of the fracture surface of the composite

specimen with 2-mil-thick PEI film adhesive.

Figure 16. SEM micrograph shows nucleation point and growth band
markings on the composite fracture surface.
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II
Figure 17. SEM micrograph shows crack propagation from block-to-block

for the composite specimen with 4-mil-thick PEI film adhesive.
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